• $

新闻资讯

全国建筑物遥感监测与分布式光伏建设潜力分析
发布时间:2022年05月30日

2020 年,我国提出“二氧化碳排放力争于 2030 年前达到峰值,努力争取 2060 年前实现碳中和”。要实现这一目标,需要降低化石燃料的消费比重,加快调整能源结构,推进风能、太阳能、生物质能等绿色能源的开发,实现能源的转型与变革 [1~5]。通过经济社会综合效益评价模型的情景模拟与综合效益分析发现,以新能源为主体的深度能源转型是实现碳中和目标的必然选择 [6]

在诸多能源类型中,太阳能是一种十分清洁的能源且蕴含量巨大。分布式光伏具有投资小、建设快等特点,可以有效利用太阳能转换为电能,从而解决能源短缺的农村地区和负荷密度高的工业区用电问题。近年来,光伏建筑一体化系统已经被证明是一种技术经济可行的可再生发电技术,西班牙、澳大利亚、韩国、美国等国家从不同角度开展了分布式光伏与建筑结合的技术研究 [7]。国内有学者利用遥感数据,考虑气象、地形的因素,完成了我国建设光伏电站的适宜性分析 [8,9]。根据新建、既有城镇公共建筑以及农村建筑的屋顶和南立面估算我国分布式光伏的装机容量,“十四五”末可达 100 GW,2030 年可达 215 GW [10]

作为分布式光伏的重要载体,建筑物屋顶的数量和空间分布事关建设规模与效益。已有研究主要是在小区域建立建筑屋顶的数据模型样本并据此推算大区域或者全国范围的体量 [11,12],相应推算结果由于受到各地区建筑物建筑特性的影响而存在不确定性。因此,掌握全国范围的建筑物面积是进行分布式光伏潜力推算的关键内容。采用传统实地测量的方式无法及时、全面地掌握全国范围的建筑物面积情况。随着高分辨率卫星遥感技术的发展,卫星遥感数据类型丰富多样,空间分辨率达到米级,为地表建筑物的特征提取提供了数据源条件。人工智能、深度学习技术的发展也为建筑物的智能识别与特征提取提供了技术基础,如建筑物提取主要采用合成孔径雷达(SAR)、激光探测及测距(LiDAR)、多光谱等遥感数据 [13~16],基于深度学习的智能识别和提取 [17~19] 形成了典型城市的建筑物数据集 [20](提取精度可以达到 80%~85%)。

以往的研究大多采用局部区域提取建筑物屋顶,推算全国范围的分布式光伏建设潜力或装机容量,由样本至全体的估算过程存在诸多不可控误差。本文以 2020 年全国高分辨率卫星遥感影像为数据源,利用深度学习技术提取全国建筑物(区);通过典型区域的建筑占比系数,利用分级、分区和全国平均的方法进行建筑物屋顶面积转换,获得全国范围的建筑物屋顶数据。这一方法的应用价值体现在:①能够精确获取全国范围建筑物(区)的空间分布,掌握可承载分布式光伏的建筑区(物)的底数;②可将建筑物(区)落实到地块,便于构建建筑物(区)和分布式光伏建设的动态监测机制,动态掌握分布式光伏项目的建设进度;③可将分布式光伏数据与人口经济数据进行融合分析,为分布式光伏建设路径规划提供技术性支撑。