• $

信息中心

海洋桥梁工程抗风研究现状
发布时间:2022年06月12日

(一)海洋桥梁场址风场特性的研究现状

我国现行的桥梁抗风设计方法和规范都是基于良态气候风场模式,其风参数(阵风因子、风速与紊流度剖面、积分尺度、脉动风谱函数)主要是针对内陆地区的季风气候特征 [9]。然而,近年来的现场实测表明,我国东临的西北太平洋地区是全球台风发生最多的地区(约占全球台风的 36%,年均约 35 个,如图 2 所示),其风环境特性不同于良态气候模式,具有风剖面指数更大、阵风参数远大于现行规范规定值、地表粗糙度增大明显、风速非平稳特性显著等特点。另一方面,由于台风路径的强随机性和台风风场的强不均匀性,使得对台风近地层风况的准确、精细实测十分困难,对各类地形地表的台风特性,尤其是对湍流风特性的认识还很初步。此外,现有的近海及海上气象观测平台数量少、数据时距长、精度差,尚缺乏海洋桥梁桥址范围内的局部气象综合观测预报平台,无法对未来深海桥梁的建造及运营提供有力支撑。

图 2 全球各地区台风分布情况

 

国内外学者在台风风场模拟方面开展了大量的研究,建立了许多台风风场模型,以获取较准确的台风极值风速,如 Batts 模型 [10]、Vickery 模型 [11]、Yan Meng 模型 [12]、CE(US Army Corps of Engineers)模型 [13] 等。虽然上述台风随机数值模拟模型比较成熟,能够有效评估台风风场的极值风速,但是其对我国沿海地区台风风场的适用性还有待研究检验。上述台风模型采用简化的动力方程求解台风风场,未考虑复杂的大气物理过程及下垫面的影响,模拟的近地层台风风场结构及分布与实际情况相差较大。为获得较准确的近地风场信息,国内外学者 [14] 基于天气研究和预测高级研究(WRF-ARW)模式,采用三维数值模拟方法对台风风场进行研究,获得了较精确的台风平均风场结构,然而其数据分辨率有限,且不能实现对脉动风场特性的有效模拟,仍无法完全满足海洋大跨桥梁设计、施工需求。

(二)风对大跨桥梁结构作用的研究现状

针对风对桥梁结构的作用,现有的抗风理论与方法主要是将其分为平均风来流引起的静风力、脉动风来流引起的抖振力、断面旋涡脱落引起的涡激力和结构运动引起的自激力,并对它们分别建立理论计算模型、确定试验识别参数、分析结构灾变行为。

风对桥梁结构的静力效应是人类最早认识的问题,其对结构安全可能产生的问题主要是静风失稳问题。现有的迭代分析方法,可较准确地获得其在均匀流下静风失稳临界风速,然而对于台风等强湍流来流下海洋桥梁工程的静风稳定性还缺乏深入研究。

风的动力作用激发桥梁结构振动,振动结构反过来改变了流场运动的边界条件,从而影响流场和气动力,形成了风与结构的相互作用机制。当结构振动对空气力的影响较小时,空气的动力作用可以视为一种强迫振动荷载,主要导致桥梁结构的强迫振动——随机抖振;而当结构振动对空气力的影响较大时,同振动结构形成一个具有相互作用反馈机制的动力系统的空气力,其主要表现为一种自激力,导致桥梁结构的自激振动——颤振或驰振。近年来,随着针对这些作用力的各种气动力模型,特别是钝体桥梁断面的气动力参数(包气动力系数、颤振导数和气动导纳)风洞试验识别理论和技术方法的建立和发展,有效保证了良态风作用下大跨度桥梁的抗风稳定性、安全性和舒适性。然而,台风风场特性与常见良态风存在着很大差异,对桥梁结构的作用机理也不明晰;而且未来海洋桥梁跨度更大、结构体系更加复杂、刚度更加轻柔、阻尼更小、三维和非线性效应更加显著,现有桥梁抗风分析理论的精细化程度和适用范围均不能满足海洋桥梁的建造需求。

还应指出的是,目前的抗风设计规范对涡振、颤振等桥梁风致振动的评价标准单一,不适用于评价超大跨度海洋桥梁的抗风性能,亟待开展大量的基础研究工作。

(三)风振控制技术的研究现状

为确保大跨桥梁抗风安全性和舒适性,需对其风致振动进行控制,主要措施包括结构措施﹑气动措施和机械措施。

在结构控制措施方面,利用空间缆索系统和设置辅助索等方式提高桥梁的抗风性能,但采用空间缆索体系存在施工困难、施工过程受力复杂等问题,设置辅助索会破坏原有索面的景观、也存在设计复杂、安装困难等缺点;采用组合结构(见图 3)[15]虽然从理论上能够满足未来超大跨桥梁的建设需求,但面临着结构受力复杂、造价昂贵、施工工艺复杂等问题,且缺乏相关建造经验,施工过程中的关键抗风问题也不明确。

图 3  直布罗陀海峡桥设计方案

 

气动控制措施是目前采用最多的一种风振控制措施,通过改变主梁、桥塔、拉索等结构的气动外形或者在结构上附加稳定板、导流板等气动设施来改变其气动布局,从而达到提高气动性能的目的。但是未来海上大跨度桥梁面临的风速范围更广,需能同时控制多种风致振动的措施,然而相关研究却很少。

现有的机械措施主要采用被动、半主动和主动等三种方式实现对各种风致振动的控制,如调谐质量阻尼器(TMD)技术已经广泛用于桥塔、主梁等风振控制。同时黏性剪切阻尼器(VSD)及磁流变阻尼器(MR)技术控制拉索振动。相关研究表明,主动气动控制技术(见图 4)在主梁的风振控制方面更加合理高效 [16,17],但目前多数处于研究阶段,尚无相关应用案例。

图 4 Huynh 主动控制面附加气动力作用模型

 

未来的桥梁工程步入了建设跨海连岛工程的新时期,施加风振控制措施的可能性和必要性更强。亟需发展新的、更加高效的抗风结构体系和新型风振控制技术。

(四)行车安全的研究现状

与内陆桥梁相比,海洋桥梁上的行车安全问题更加突出。目前主要防风措施为设置风障(见图 5)[18],在箱梁内部设置车道;主要的防风运营管理方法是结合桥位气象观测施行灾害天气下的车辆限速、限行的交通管控措施。相关成果结合特定的桥梁形式初步揭示了风对桥面通行车辆安全性和舒适性的影响规律,建立了风致桥面行车安全与舒适性评价的基本方法,风屏障工程和交通运营管控措施的应用,在一定程度上提升了强风区大型桥梁的风天运营服务水平。然而,上述防风技术及管理方法均是针对内陆或近海桥梁的行车安全问题,有关深海桥梁工程行车安全的防风措施研究还较少。

图 5  嘉绍大桥风障

相关文章