• $

信息中心

高性能材料在海洋工程中的应用技术研究
发布时间:2022年06月15日


(一)高性能钢材在海洋工程中的应用

1. 海洋桥梁工程用高性能钢板焊接工艺研究在 JIS3114 的基础上,日本开发出桥梁用高性能钢 SBHS500W 和 SBHS700W。SBHS700W 高性能钢是新日铁 1994 年为明石海峡大桥设计的刚性大梁用材料。国内海洋桥梁工程用高性能钢板在焊接方面的工艺研究由于母材研究的匮乏尚处于起步阶段。但是类似于 Q420qE、Q500qE 的力学性能高、具备一定耐腐蚀性能的桥梁钢的焊接工艺研究已非常成熟,且经过实际应用检验 [12]。一旦研制出高性能耐海洋腐蚀用钢,焊接工艺研究工作必定快速跟上步伐。

2. 缆索用钢盘条热处理工艺

国外桥梁缆索用镀锌铝合金钢丝的生产对线材(盘条)有着较高的要求,一般为共析钢或者过共析钢成分的盘条。该高碳钢需要通过适当的热处理方式获得良好的综合性能,以便于制作高强度、高性能缆索用钢丝。淬火是高碳钢丝生产中的关键工序之一,盘条通过淬火得到符合生产工艺及产品要求的组织结构,如良好的拉拔性能和综合力学性能等 [13]

3. 缆索用钢盘条深加工工艺研究

(1)线材表面处理

为了降低拉拔时钢丝与模壁间的摩擦系数,确保钢丝表面质量,钢丝拉拔前应对盘条进行表面处理(包括以清除盘条表面氧化皮为主的表面清净处理)以及润滑涂层处理。

(2)钢丝拉拔

钢丝的拉拔主要目的是为了获得具有稳定的形状、尺寸和性能指标,并符合产品技术要求的钢丝。变形金属在不发生脆断的情况下所能承受的最大延伸率值,称为该金属的冷加工极限。桥梁缆索用镀锌铝钢丝的原材料为索氏体化程度很高的热轧盘条,其冷加工极限高达 90% 以上,实际生产中采用多模连续拉拔,较低的部分压缩率,避免了钢丝变形过快而产生温升异常现象,保证了钢丝的高强韧性。

(3)钢丝抗疲劳性能研究

由于单丝疲劳损坏在整体索股中的累积效应,随着主缆索股规格的增大,其抗疲劳性能降低。基于以上调查研究,对影响超高强度大规格索股疲劳性能的因素(如原材料的抗疲劳性能、锚固过渡区参数等)进行了系统的分析和研究,其中,针对索股的高应力范围要求,钢丝的疲劳应力上限为 0.45 倍抗拉强度对应的应力,应力循环次数为200 万次。

(二)高性能混凝土耐久性提升技术在海洋工程中的应用

1. 混凝土的温度调控、收缩抑制以及增韧技术

(1)混凝土水化放热历程调控技术

为了抑制混凝土的温度开裂,必须严格控制混凝土温升,除了传统降低水泥用量、放热量、水冷等方式,也可通过化学外加剂(水化热调控材料,TRI)控制混凝土结构温升,进而降低开裂风险。

(2)分阶段全过程混凝土收缩抑制技术

通过相转移催化的方法合成具有亲水 / 亲油特性的两亲性聚合物(聚甲基丙烯酸十八酯),解决了小分子两亲性化合物间弱范德华力的缺陷,有效提升了单分子膜的排列密度和稳定性,实现了单分子膜抑制水分蒸发性能的有效提升。最终可降低混凝土塑性阶段水分蒸发 70% 以上,降低塑性收缩 50% 以上,该技术已应用于兰新高速铁路、成贵高速铁路、泰州大桥、横琴二桥等国家重大工程。

2. 干湿交变下侵蚀性介质传输与混凝土腐蚀抑制技术

(1)侵蚀性离子传输抑制技术

新型混凝土侵蚀性介质传输抑制技术利用与水泥水化产物可以形成键合作用的新型有机物,彻底解决了传统材料溶出的问题。该类产品可以实现疏水长碳链与水泥水化产物的化学键合,且不影响混凝土的水化进程和强度发展等性能;同时利用“纳米效应”,进一步减少混凝土有害孔,优化孔结构,增加混凝土致密性,以江苏苏博特新材料股份有限公司的侵蚀性离子传输抑制技术(TIA)为典型。掺入侵蚀介质传输抑制剂,混凝土抗压强度提升10 MPa,电通量、吸水率、氯离子扩散系数降低超过 40%,效果较国外同类产品提升 50%,该技术已应用于虎门二桥项目。

(2)盐结晶抑制技术

混凝土抗硫酸盐腐蚀选择性结晶抑制剂掺入混凝土中,可在 5% Na 2 SO 4 腐蚀环境下,在不影响氢氧化钙等正常水化结晶产物生成的前提下降低钙矾石的生成量,减少混凝土试件的力学性能损失,抑制腐蚀膨胀的产生。

(3)海工混凝土结构外防护涂层体系

在有机防护材料方面,针对高盐浓度、水下环境的极端环境,近年来基于水性化与湿固化技术的防护材料已成为国际研究的热点。研究表明,以吸水量、抗化学腐烛、氯离子的渗透为评价指标,则环氧涂层和聚氨酯涂层的防护性能优于其他涂层。随着老化时间的延长,涂层表面光泽度不断下降,涂层的耐腐蚀性能下降,聚合物化学键被破坏,造成涂层树脂不断降解引起老化。目前,有机硅是使用最广泛的渗透性表面防护涂料。有机硅防水涂料是通过涂装,在硅酸盐基材表面和孔隙内部形成硅氧烷憎水膜以达到防水效果。无机防护材料突出的耐老化性能与绿色水性化特征使得该材料逐步得到广泛关注,无机类渗透性防护材料由于渗透性与反应性的矛盾导致此类技术展现出的防护效果有待进一步提高。

3. 基于有机阻锈剂的结构钢筋长效防护与修复技术

(1)干湿交变下长效阻锈技术

利用现代有机合成技术,将多位点强吸附阻锈分子与 Cl – 传输抑制分子整合为一体,在结构服役过程中缓慢释放,从而巧妙规避对混凝土新拌性能的影响,真正实现高效阻锈分子在实体结构中的应用,并对阻锈分子进行合理的浓度配置;释放出的Cl – 传输抑制组分通过与 Ca 2+ 的分子自组装,在混凝土保护层中构建离子屏障,确保钢筋表面阻锈分子对 Cl – 的长期浓度优势。

(2)纳米材料在水泥基复合材料中的应用

纳米材料在促进水泥基材料的早期水化进程,提升其早期强度方面应用前景广阔,与钙盐、三乙醇胺等传统早强剂相比,纳米材料具有无有害离子(如氯离子、硫酸根等)引入,掺量敏感度低(三乙醇胺等过掺易缓凝)等优点(见图 3)。

图 3 纳米材料提升水泥基材料早期强度的原理


相关文章